Optimal Padding for the Two-Dimensional Fast Fourier Transform
نویسندگان
چکیده
One-dimensional Fast Fourier Transform (FFT) operations work fastest on grids whose size is divisible by a power of two. Because of this, padding grids (that are not already sized to a power of two) so that their size is the next highest power of two can speed up operations. While this works well for one-dimensional grids, it does not work well for two-dimensional grids. For a two-dimensional grid, there are certain pad sizes that work better than others. Therefore, the need exists to generalize a strategy for determining optimal pad sizes. There are three steps in the FFT algorithm. The first is to perform a one-dimensional transform on each row in the grid. The second step is to transpose the resulting matrix. The third step is to perform a one-dimensional transform on each row in the resulting grid. Steps one and three both benefit from padding the row to the next highest power of two, but the second step needs a novel approach. An algorithm was developed that struck a balance between optimizing the grid pad size with prime factors that are small (which are optimal for one-dimensional operations), and with prime factors that are large (which are optimal for two-dimensional operations). This algorithm optimizes based on average run times, and is not fine-tuned for any specific application. It increases the amount of times that processor-requested data is found in the set-associative processor cache. Cache retrievals are 4–10 times faster than conventional memory retrievals. The tested implementation of the algorithm resulted in faster execution times on all platforms tested, but with varying sized grids. This is because various computer architectures process commands differently. The test grid was 512×512. Using a 540×540 grid on a Pentium V processor, the code ran 30 percent faster. On a PowerPC, a 256×256 grid worked best. A Core2Duo computer preferred either a 1040×1040 (15 percent faster) or a 1008×1008 (30 percent faster) grid. There are many industries that can benefit from this algorithm, including optics, image-processing, signal-processing, and engineering applications. This work was done by Bruce H. Dean, David L. Aronstein, and Jeffery S. Smith of Goddard Space Flight Center. Further information is contained in a TSP (see page 1). This invention is owned by NASA, and a patent application has been filed. Inquiries concerning nonexclusive or exclusive license for its commercial development should be addressed to the Patent Counsel, Goddard Space Flight Center, (301) 286-7351. Refer to GSC15678-1.
منابع مشابه
Determination of Riboflavin by Nanocomposite Modified Carbon Paste Electrode in Biological Fluids Using Fast Fourier Transform Square Wave Voltammetry
Herein, fast Fourier transformation square-wave voltammetry (FFT-SWV) as a novel electrochemical determination technique was used to investigate the electrochemical behavior and determination of Riboflavin at the surface of a nanocomposite modified carbon paste electrode. The carbon paste electrode was modified by nanocomposite containing Samarium oxide (Sm2O3)/reduced gra...
متن کاملEfficient Dealiased Convolutions without Padding
Algorithms are developed for calculating dealiased linear convolution sums without the expense of conventional zero-padding or phase-shift techniques. For one-dimensional in-place convolutions, the memory requirements are identical with the zero-padding technique, with the important distinction that the additional work memory need not be contiguous with the input data. This decoupling of data a...
متن کاملImplicitly Dealiased Convolutions: Example Applications and Performance Comparison
Implicitly dealiasing is a recently-developed technique which improves upon conventional zero padding to compute linear convolutions via fast Fourier transforms. For onedimensional inputs, the memory requirements and performance are similar to conventional zero-padded convolutions, but implicitly dealiased convolutions are faster and require less memory when the data is multi-dimensional. We sh...
متن کاملDealiased Convolutions for Pseudospectral Simulations
Efficient algorithms have recently been developed for calculating dealiased linear convolution sums without the expense of conventional zero-padding or phase-shift techniques. For one-dimensional in-place convolutions, the memory requirements are identical with the zero-padding technique, with the important distinction that the additional work memory need not be contiguous with the input data. ...
متن کاملZero-padding or cyclic prefix for MDFT-based filter bank multicarrier communications
In this paper, the problem of channel equalization in modified discrete Fourier transform (MDFT)-based filter-bank multicarrier system (FBMC) is addressed. Two different system models based on padding zeros or using cyclic prefix in each transmitted block are presented. The proposed systems utilize IFFT/FFT blocks embedded in an MDFT-FBMC system. In the first one, an equalization block similar ...
متن کامل